A Model of Heterosexual Population Dynamics with Age Structure and Gestation Period
نویسندگان
چکیده
منابع مشابه
Dynamics of a Delayed Epidemic Model with Beddington-DeAngelis Incidence Rate and a Constant Infectious Period
In this paper, an SIR epidemic model with an infectious period and a non-linear Beddington-DeAngelis type incidence rate function is considered. The dynamics of this model depend on the reproduction number R0. Accurately, if R0 < 1, we show the global asymptotic stability of the disease-free equilibrium by analyzing the corresponding characteristic equation and using compa...
متن کاملa comparison of teachers and supervisors, with respect to teacher efficacy and reflection
supervisors play an undeniable role in training teachers, before starting their professional experience by preparing them, at the initial years of their teaching by checking their work within the proper framework, and later on during their teaching by assessing their progress. but surprisingly, exploring their attributes, professional demands, and qualifications has remained a neglected theme i...
15 صفحه اولUncertain population model with age-structure
The partial differential equation has been vastly applied to analyzing the problems in the life sciences. However, these types of partial differential equation models are mostly deterministic. As we know, the real life is full of uncertain factors, hence the above deterministic partial differential equations are not enough to handle the problems with uncertain noises. For modelling these proble...
متن کاملThe Dynamical Analysis of a Delayed Prey-Predator Model with a Refuge-Stage Structure Prey Population
A mathematical model describing the dynamics of a delayed stage structure prey - predator system with prey refuge is considered. The existence, uniqueness and bounded- ness of the solution are discussed. All the feasibl e equilibrium points are determined. The stability analysis of them are investigated. By employ ing the time delay as the bifurcation parame...
متن کاملdynamics and bifurcations of a lotka-volterra population model
this paper investigates the dynamics and stability properties of a discrete-time lotka-volterra type system. we first analyze stability of the fixed points and the existence of local bifurcations. our analysis shows the presence of rich variety of local bifurcations, namely, stable fixed points; in which population numbers remain constant, periodic cycles; in which population numbers oscillate amo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Analysis and Applications
سال: 1993
ISSN: 0022-247X
DOI: 10.1006/jmaa.1993.1033